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Robust Direction Finding

Final Report for Grant N00014-04-1-0151

Richard J. Vaccaro
Department of Electrical and Computer Engineering

University of Rhode Island
Kingston, RI 02881

Abstract

This work considers the problem of estimating directions of arrival (DOAs) from sensor-array
data when the positions of the sensors are not precisely known. The proposed algorithm is
an extension of a previously developed approach based on weighted subspace fitting. The new
algorithm shows improved robustness with respect to sensor position perturbations, partic-
ularly when estimating the DOAs of weak sources. The robust algorithm treats the sensor
position perturbations as unknown deterministic parameters and estimates them jointly with
the DOAs. The distances between each sensor in the perturbed array were constrained to
equal their nominal values. The algorithm adds one source at a time to the model until the
amplitude of an identified source is below a threshold. For each source added to the model, the
algorithm performs a one-dimensional grid searches followed by multidimensional optimization
over a small region of parameter space. This method is effective for estimating a large number
of parameters.



1 Introduction

The performance of array processing algorithms is degraded when the sensor positions are
perturbed from their nominal values. Various methods have been proposed to deal with this
problem. Gilbert and Morgan [1] considered the calculation of beamforming weights. They
showed that weights required to produce a very narrow main beam gave a severely degraded
beampattern when the sensor positions were perturbed. They derived a formula to calculate
the narrowest possible main beam subject to a constraint on the degradation caused by sensor
position perturbation.

Schultheiss and Ianiello [21 considered the effect of sensor postion perturbations on the
problem of estimating the range and bearing of a single source. They showed that, to first
order, conventional beamforming, which is optimal when there is no perturbation, remains
optimal for small array perturbations. However, this result is valid only for a single source.

In this paper we propose a robust algorithm for estimating the directions of arrival of
multiple sources based on weighted subspace fitting. This is an extension of the WSF algorithm
presented in [3]. In addition to presenting a cost function, [3] showed how to obtain initial
DOA estimates, determine the number of sources in the data, and handle multiple clusters of

closely spaced, non-resolvable sources. However, the algorithm in [3] assumed that the sensor
positions were precisely known, and its performance is degraded when there is sensor position
perturbation. In this paper, we remove to some degree this degradation by jointly estimating
the postion perturbations, which are considered to be deterministic unknown parameters, and
the DOAs.

There is related work in references [4]-[6]. In [4] a WSF cost function was derived based
on the asymptotic statistics of perturbed eigenvectors, whereas the WSF cost function used in
this paper was derived from a subspace perturbation expansion [3]. References [5] and [6] use
statistical models for array perturbations, including sensor position errors and sensor gain and
phase errors. A WSF cost function is derived in which the weights are calculated to minimize
the DOA estimation error variance with respect to both the additive noise in the data and the
array perturbations.

2 Data Model

The model for the noise-free signal at a single frequency is

Y=A(0o,x,y,z)S = [a, ... aS (1)

where Y is rn x n, A is m x r, and S is r x n. In this application, m is the number of sensors, n
is the number of snapshots of array data, and r is the number of narrowband signals impinging
on the array. The vector of possible DOAs is 0 and 00 denotes the actual DOAs. The vectors
x, y, and z contain the coordinates (positions) of the sensors.

In this paper we consider a nominally uniform linear array of sensors whose coordinates are:

0 -0- 0 - 0
0 0 d

x0 = 0 ,YO= ,x 0 - 2d (2)

0- -0-(n -1)d

2



Thus, the sensors lie along the z axis with a spacing of d = 1/2 between each sensor. The
units of d are wavelengths corresponding to an array design frequency fo.

The columns of A are the array manifold vectors, and they take the following functional
form:

ai = e-j27ra(zcos,+xsin0i) (3)

where a is the signal frequency expressed as a fraction of fo, the array design frequency. In
other words, the actual signal frequency is a fo. Note that for simplicity, all of the analysis in
this paper takes place in the xz plane (all y components equal zero). The approach can be
extended to a full three-dimensional analysis.

We rewrite the array manifold vectors in terms of two vectors

6z= [ and Sx (4)

that represent perturbations in the z and x components of sensor position, respectively. We
assume that all sensor positions are referenced to the first sensor (i.e. there is no perturbation
associated with the first sensor). Thus, the actual sensor locations are as follows:I0 0

6, 0 d + 3z1
Xa 6X2  Ya = 0 ,za = 2d -+ z2 (5)

L dx-i J (m- 1)d + 6z,_1

The nominal and perturbed sensor locations for the first three sensors of a line array are shown
in Fig. 1. We treat the position perturbations in the x direction (perpendicular to the line of
the array) as free variables. The perturbations in the z direction (along the line of the array)
are calculated so as to keep the spacing between the sensors equal to d. This is expressed with
the following constraint equations:

(Jx. - 3Xz_.)2 + (d + zi - dzi ) 2 = d 2 , i = 1,-. ,'m- 1. (6)

These equations can be solved for 6z in terms of 6x, with 6xO = 6zo = 0, as follows

6zi = 6Zi- I + V /d7 -: (6xi ....6xj_ 1)2 - d, i= 1, ... ,r - 1 . (7)

The position vectors for the actual sensor locations are

x=6xa, y=0, ZZOz+ 6 z". (8)

Thus, the array manifold vectors can be written in terms of the position perturbation vectors
as follows:

a, -j27r((zo+6) cos 0i+6x sin 0i (9)

The SVD of Y is

Y=[U1  U 2 ][01 0 ]0LV] (10)
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x

dx1  Z

0

d9-- -- -- - --- -- o_ 0 X- - - - - - - - - -

dx 2

x = nominal sensor location

o = actual sensor location

dx is a uniformly distributed random variable

dz is calculated to keep the sensor-to-sensor distance fixed

Figure 1: Nominal and perturbed sensor locations for a 3-element array.

where U1 has r columns. The columns of Uz and A(00) span the same subspace, and therefore
columns of U 2 are orthogonal to columns of A(00).

The observed (noisy) data is
'=Y+N (+1)

where the elements of N are taken to be zero mean i.i.d. complex Gaussian random variables
with variance a 2 (real and imaginary parts are uncorrelated). The SVD of Y is

E,[U U 0 2]V ]

where U1 has r columns.
The subspace-fitting criterion used here is based on the fact that, in the noise-free case,

U2 UHA(00, 6x, 0, zo + ,56z) = 0.

With noisy data the previous expression will not equal zero and we look for the parameter
vector 6 that minimizes the equation error:

6 = arg nin !min]ll 2 I2A(0,6x, 0zo + (z) ]12)

where (7) is used to calculate 6z as a function of 6x, and the norm is defined as

[ y= vec()Hw vec(.)
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and W is a weight matrix.
The weight matrix W is calculated from the statistics of the vectorized cost function eval-

uated at the true parameters [3]. Note that the perturbation of the cost function at the true
parameters is due only to the additive noise. Thus, the matrix W in this paper is the same a'
that used in [3]. After substituting in the weight matrix, the cost function may be simplified
to

C(Ax) = UA())- (13)

where A = A(0, 6x, 0, zo + 6z), Ei = (:• - &21)0-, and 6,2 is the average of the squared
singular values in :2. Finally, the subscript 'F' in (13) denotes the Frobenious matrix norm.

3 Review of Previous Algorithm

The steps of the original, nonrobust algorithm [3] are reviewed in this section. The modifi-
cations which are needed to give robustness to sensor position perturbations are given in the
following section. In the original algorithm, the cost function is given by (13) with the position
perturbation parameters fixed at zero. The algorithm proceeds as follows:

Step 1

Set r = 1 (look for one source) and plot the reciprocal of the cost function on a grid of points
to find the maximum. The angle 0 that maximizes the reciprocal of the cost function is called

Step 2

To search for the second source, set r = 2 and

__[ 02]

where 01 is fixed at its value from the first step. The reciprocal of the cost function is plotted
as a function of 02. The value of 02 that maximizes the reciprocal of the cost function is called

02.

Step 3

With

b02j

as an initialization, C(O) is minimized (e.g. using the Matlab Optimization Toolbox), and the
signal powers and noise powers are estimated [3].

Step 4

This process of adding one source at a time is repeated until the SNR estimated for any source
is less than a user-specified threshold SNR. The initial value for each new source is obtained
using a one-dimensional grid search of the cost function with all previously found DOAs fixed.
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After the initial value of the new source is found, the cost function is minimized with respect to
all of the DOAs. This minimization is done with tight upper and lower bounds on the DOAs,
centered on their current values.

Because of the weighting in the cost function, the sources are found roughly in the order of
their powers, from strongest to weakest. This ordering is occasionally altered when there are
sources of nearly equal power.

4 Robust Algorithm

Simulation results show that the original algorithm has some robustness to sensor perturba-
tions. The main effects of these perturbations are that the variances of the DOA estimates
increase and the estimated SNRs decrease due to the mismatch between the array manifold
model used to calculate the SNR and the actual (perturbed) array manifold. The original
algorithm gives reasonable estimates for all but the weakest sources. Thus, we can use the
original algorithm with a high SNR threshold to initialize the robust algorithm.

For example, in the simulations shown in the next section, the original algorithm uses an
SNR threshold of -10 dB when there are no sensor position perturbations. In order to deal
with sensor perturbations, the threshold is set to 10 dB, After sources above 10 dB have been
estimated, the remaining sources are estimated jointly with the perturbation parameters 6x.
The grid searches for each new DOA are done with the 6x parameters fixed at their current
values. The minimizations are done with respect to all DOA and perturbation parameters.

The robust algorithm treats the actual sensor position perturbations as unknown determin-
istic parameters. The initial guesses for the perturbation parameters are all zero, and tight
upper and lower bounds (±0.1) are used for each element of 5x. The perturbation parameters
are expressed as a fraction of the sensor spacing, d. We use the same sequential precedure as
before, adding one source at a time.

5 Simulation Example

In this section we consider a challenging simulation example consisting of seven moving sources,
some strong and others weak, at normalized frequency 0.4. The array is a 48-element uniform
linear array.

Fig. 2 shows a time-bearing plot of the estimated sources obtained with the original algo-
rithm; the data are generated with no array perturbation. The colorbar gives the estimated
signal-to-noise ratios of each estimated source. The given data contained 1800 snapshots from
the array and these were processed in blocks of 15 snapshots. In this example the number of
sources was not assumed to be known in advance. For each matrix processed, sources were
estimated one at a time. Each time a new source was estimated, the SNR associated with all
of the sources was also estimated. Additional sources were added to the model until the SNR
associated with one of the estimated sources was less than -10 dB.

In the remaining examples, the data were generated with some amount of array perturba-
tion. The 6x parameters specifying the perturbed array were generated as iid random variables
uniformly distributed on the interval [-A, A], where A is specified as a fraction of the inter-
sensor spacing, d. Fig. 3 shows the result of the original algorithm processing data generated
with A = 0.02. Notice that the weak sources near 0 dB are not well estimated (compare with
Fig. 2).
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Original Algorithm, No Array Perturbation
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Figure 2: Time-bearing- plots for a seven-source simulation. Color bar indicates estimated

sign al-to- noise ratio in dB. Original algorithm. No array perturbation.

Original Algorithm, elta=0.02
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Figure 3: Time-bearing plot for seven-source example. Original algorithm. Data generated
with array perturbation, 0.02.
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Fig. 4 shows the result of the original algorithm processing data generated with A 0.04.
The weak sources are no longer visible.

Original Algorithm, Delta=0.04
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Figure 4: Time-bearing plot for seven-source example. Original algorithm. Data generated
with array perturbation, A = 0.04.

Figs. 5 and 6 show the results of the robust algorithm processing data generated with
A = 0.02 and 0.04, respectively. Although there is some degradation in the estimation of the
weak sources, there is a noticeable improvement over the original algorithm (Figs. 3 and 4).

6 Summary

The sensitivity of the WSF algorithm described in [3] to sensor position perturbations can be
reduced by estimating these perturbations along with the DOAs. Using this approach, one is
able to incorporate constraints on the perturbations. In this paper the distances between each
sensor in the perturbed array were constrained to equal their nominal values. The sequential,
add one source at a time, procedure of one-dimensional grid searches followed by multidimen-
sional optimization over a small region of parameter space is an effective method for estimating
a large number of parameters.
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Robust Algorithm, Delta=0.02
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Figure 5: Time-bearing plot for seven-source example. Robust algorithm. Data generated
with array perturbation, A = 0.02.

Robust Algorithm, Delta=0.04
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Figure 6: Time-bearing plot for seven-source example. Robust algorithm. Data generated
with array perturbation, A = 0.04.
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